

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 https://en.wikipedia.org/wiki/Boneh%E2%80%93Lynn%E2%80%93Shacham

dotnet nuget project
https://www.nuget.org/packages/IndyDotNet/

dotnet nuget instructions
https://docs.microsoft.com/en-us/nuget/quickstart/create-and-publish-a-package-using-visual-studio?tabs=netcore-cli

 The following are approved contributors for IndyDotNet
matt raffel matt.raffel@gmail.com

Projects

	IndyDotNetCLI - UI application for running IndyDotNet interactively

	IndyDotNet - DotNet library for accessing libindy APIs

	DotNetPay - DotNet implementation of LibNullPay (in IndySDK project)

	Tests - contains tests for IndyDotNet. The purpose of these tests is not to
test IndySDK. Rather the purpose is to prove IndyDotNet correctly communicates
to IndySDK.

note currently DotNetPay is just an empty project.

3rd Party Libraries

	Newtonsoft.Json website [https://www.nuget.org/packages/Newtonsoft.Json/]

	Terminal.Gui website [https://www.nuget.org/packages/Terminal.Gui/]

	Nlog website [https://nlog-project.org/]

WHAT

This project provides language idiomatic implemention in .NET for using IndySDK API [http://github.com/hyperledger/indy-sdk/].

This project has adopted the Microsoft Open Source Code of Conduct [https://opensource.microsoft.com/codeofconduct/]. For more information see the
Code of Conduct FAQ [https://opensource.microsoft.com/codeofconduct/faq/] or contact opencode@microsoft.com with any additional questions or comments.

WHY

IndySDK project does include a .NET wrapper. This project is different.

The IndySDK .NET wrapper expects developers to know the intrinsic details of
IndySDK, explicitly needing to know the data contracts. Not necessarily a bad
thing, but it does make it very difficult to use.

We believe .NET engineers should work with a library that is much easier to use
and less fragile. This means an idiomatic, object oriented approach over json string data manipulation.

IndyDotNet (this project) benefits (and goals) are:

	Work with defined types. No need to understand the data contracts and json structure.

	Make calls synchronously or asynchronously as you need with ease.
No need to make ever call asynchronous needlessly.

	Much better isolation of the IndySDK API resulting in your projects being less fragile.

	Better compatibility between IndySDK versions.

	Better support on all OSes (depends on IndySDK ability to address OS specific
handling as well, unfortunately)

	Better error messages.

	More intuitive CLI implementation.

	DotNetPay serves as an example for implementing specific Indy SDK Payment API.

	For you developers, a true object oriented implementation that follows SOLID principles.

Nuget Package

There is now a nuget package available [https://www.nuget.org/packages/IndyDotNet/]:

As of the last update, run this command to install it:

dotnet add package IndyDotNet --version 0.1.2

LICENSE

MITApache 2.0

Status

Functional/Maintainence updates until Aries [https://github.com/hyperledger/aries] stablizes

build status

[image: _images/circleci-docs.svg]CircleCI [https://app.circleci.com/pipelines/github/tatmanblue/IndyDotNet]

README Revision

2020.06.22

Components of this project

See PROJECTS.md

Project Documentation

PROJECTS.md - describes the projects that make up this repoTESTING.md - how to setup environment for running the testsTODOS.md - important engineering topics to be completed

Acknowledgements

Thank you to the indy-sdk-dotnet wrapper project members for assistance, even if indirectly
helping us. It would have been much more time consuming if we only had the IndySDK
rust libraries to rely on for information.

See Also

https://github.com/hyperledger/indy-sdk

Indy-sdk version

Works with indy-sdk master branch, and version 1.8.0 - 1.15.0

Assumptions

This document itself is work in progress. Right now, its pretty terse and
the makes more sense in my head than anyone else. Feel free to contact me

Current Version supported

Tested and building against Indy-Sdk 1.8.0 (master)

Link to LibIndy

Note: this is OS specific, looks to be macos

	Download and build LibIndy (requires rust) using master for now

	copy or create symbolic link to libindy.dylib. it must be called indy for now

eg ln -s ~/src/work/indy-sdk/libindy/target/debug/libindy.dylib indy

Setting up pools

	in token-plugin project at Sovrin [https://github.com/sovrin-foundation/token-plugin]
either build or run the docker image. Run command looks like this

docker run -itd -p 9701-9708:9701-9708 indy_pool

Alternative to building LibIndy, download stable 1.7.0

Windows - download binary [https://repo.sovrin.org/windows/libindy/]Ubuntu - download binary [https://repo.sovrin.org/sdk/lib/apt/xenial/stable/]

another set of instructions for settting up an enviroment

IndyDev [https://github.com/kdenhartog/indy-dev]

These are high level project goals that need to be completed before calling it good

[] asyncronous calls. there is plan but completing syncronous use is priority
[] Some functions in Pool/Wallet require it to be opened first. currently
those functions just return when they are not open: no error, no logging etc….
there should be a different behavior: throw an exception
[] Should types wrap/map to their own exceptions (aka WalletException always thrown when
IndySDK returns an exception)?
[] Async files in each namespace were copied from indy-dot-net. the comments are not always
correct with the changes made for IndyDotNet
[] Async files have references to some IndyDotNet types and other cases uses primitives
such as strings. This is inconsistent.[] General exception definitions
[] Global handler for AggregateException
[] documentation for getting build environment working (more than see IndySDK)
[] Design by Contract is not enforced. Consider something like
https://github.com/Microsoft/CodeContracts

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

